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Problem Definition



Francis Ysidro Edgeworth
1881

Vilfredo Pareto
1896

Notion of Edgeworth-Pareto Optimal



 x is an efficient solution if there exists no 
x’ such that

zi(x’) zi(x) i=1,…,p and

zi(x’)< zi(x) for at least one i.

 If x is efficient then (z1(x),…,zp(x)) is said 
to be nondominated.

 Remark:  “Best” solution is an 
efficient solution.

Efficient solution



Efficient set / frontier

The set of all efficient solutions form the 
efficient set /frontier

The set of all nondominated points form the 
nondominated set /frontier



Solution Types

Extreme supported nondominated:

Nonextreme supported nondominated:

Unsupported nondominated : 

Dominated:

Min z1

Min z2



Classification

If X={X1,…,Xn} then 
Choice (Discrete Alternative) Problem
where Xi=(xi1,…,xip)

If X={x: gj(x) bj j=1,…,m} then Design 
(Continuous Solution Space) Problem

If X is discrete and “large” then
Combinatorial Problem



MOCO

X is discrete and “large”

Grows fast with problem size

Hope of solving to optimality reduces as 
fast with problem size



Basic Concepts:
Variable, Criterion and Value Space

X Q

V

Continuous Solution Space



Basic Concepts:
Variable, Criterion and Value Space
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V

Discrete Alternative



Illustration: An MOLP-Problem
Max  f1 = -x1 + 2x2

Max  f2 =  2x1 - x2

Subject to:

x1  4

x2 4
x1 + x2  7

- x1 + x2  3

x1 - x2  3

x1, x2  0



MOLP-Example: In Decision Space
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MOLP-Problem: In Criterion Space



MOLP-Problem: In Criterion Space
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Theorem

yields a (supported) efficient solution for any set 
of weights  satisfying wi > 0 i=1,…,p  

Remark: Changing wi’s systematically, different 
(supported) efficient solutions can be obtained



Weighted Sums: MOLP
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w2  w1

w2 = w1

Usually, only extreme supported 
nondominated solutions are obtained!!
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Criteria and weight space

Source: Antunes et al. MOLP software



Weighted Sums: Discrete Alternative 
Problem

q1

q2
w1= 0

w2  w1

w1  w2

A
B
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D E
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Weight Set - Linear

Source: Antunes et al. MOLP software
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Weight Set - Tchebycheff

Source:  Bozkurt et al. (2010) Oper. Res.



The -constraint approach
Idea: Write “min. acceptable level” constraints on all 
but one objective

Max zk(x)

zi(x)  i  i ≠ k

x X

The solution may be weakly efficient but inefficient

does not guarantee 
an efficient solution



-constraint (cont.)

To guarantee an efficient solution, solve

Max zk(x) 

zi(x)  i  i ≠ k

x X

+i ≠ k i zi (x)

where i >0 and arbitrarily small



-constraint (cont.)

Changing i values systematically, we can find 
many (sometimes all) efficient solutions and 
approximate the efficient frontier

We can explore different (desirable) parts of 
the efficient frontier

In integer programs, we may be able to find 
all efficient solutions



Example
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Choice (Discrete) Problem:
Further Outline

Prior articulation of preferences
• Estimating a value function
• Outranking relations
• AHP

Progressive articulation of preferences
• Interactive approaches-implicit value fn.

• linear
• quasiconcave
• general monotone

• Estimation of the form of value fn.

Visual Interactive Approaches
• VIMDA, VISA, …

Classification and Sorting Problems



Progressive articulation of preferences-
Interactive approaches

Suitable for:
 large # of alts

 several criteria (say 2-7).

Aim: converge to “best” alternative quickly.

Assume
 the DM can compare pairs of alternatives

 there exists an implicit value fn, v, consistent with 
DM’s preferences

 the general form of v (linear or quasiconcave or general 
monotone) is known.



Structure of the approach

The DM compares provided pairs of alternatives.

Set of alternatives is reduced (based on DM’s 
response and known form of v).

Repeat until only “best” alternative is left.



Linear v
A pair of alts. are adjacent efficient if their 
convex combinations are not convex 
dominated



Linear v (Zionts, EJOR 1981)

 Theorem:  An alt. preferred to all its adj. eff. alts. is 
“best.”



Approach

Find x* maximizing a linear estimated v

Ask DM to compare x* with its adjacent 
efficient solutions
 If an adjacent eff. solution is preferred update v 

and start again

If x* is preferred to all adjacent eff. 
solutions, Stop.



Stanley Zionts



Quasiconcave v (Korhonen et al, 
Mgmt. Sci. 1984)

Property of v: decreasing marginal rate of 
substitution. 

Thm: If   v(Xk)=MiniSv(Xi)  then

for all Y satisfying

C=Xk+iS i(Xk-Xi) Y    i0

we have

v(Xk)  v(Y).



Demonstration
Assume v(X1) > v(X2)



To solve for Yt

If (P) is feasible then v(Xk)v(Yt)

If (P) is infeasible then no info.

• If (D) has 0 obj. at optimal:
then (P) is feasible and 
v(Xk)v(Yt)

• If (D) is positive then (P) is
infeasible and v(Xk) ? v(Yt)



Approach

Ask the DM to compare some pairs of alts.

Define all cones, and eliminate alts. that fall 
into any cone, C.

Continue until a single alt. is left.



Pekka Korhonen

Jyrki Wallenius



Variations

Köksalan, Karwan and Zionts (IEEE SMC 
1984) and Köksalan and Taner (EJOR
1992) make modifications to improve the 
convergence
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v : (Karakaya et al., EJOR 2018)

Property of v:
 approximates quasiconcave/quasiconvex 

functions well

 takes a variety of forms based on α and w



(1-u’) + (1-v’)  = 1  > 0

1.0

2.0

0.5

4.0

0.7

Nadir.

We consider weighted version and  ≥ 1
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Assume that z1 is preferred to zk, i.e. v(z1)<v(zk)

Inferior Alternatives
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Assume that z1 is preferred to zk, i.e. v(z1)<v(zk)

Inferior Alternatives
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Approach

Start with linear v.

Ask the DM to compare some pairs of alts.

Eliminate inferior alts. that fall into any Cα(zi,zk)

Update parameters of v. If necessary, increase α

Continue until a single alt. is left

If α is known, continue until an alt. is preferred to all 
its “α-adjacent” alts.



General monotone v 
(Köksalan and Sagala 1995, Man Sci)

Assume only “more is better”

Eliminate only based on dominance



Demonstration
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Approach
• Group alts into partitions & find PIs
• If DM prefers an alt to a PI, delete whole 

partition
• If necessary, reduce group sizes and redefine 

PIs
• Repeat until a single alt is left



Estimate form of v

Korhonen et al (1986, 1993), Salminen et al 
(1989)
 Solve various LPs to test violations of linearity and 

quasiconcavity

Köksalan & Sagala (1995)
 Use convex combinations of alts to quickly identify 

violations of linearity and quasiconcavity

A General Approach
 Estimate form of v
 Use most efficient algorithm available for identified 

form



Visual Interactive Approaches

VIMDA (Korhonen ‘88 EJOR)

AIM (Lotfi et. al. ’92 C&OR)

…



Classification and Sorting

Place alternatives in different classes (based on 
similarity-classification) or preference-ordered 
classes (sorting)

Examples
 Patients into disease groups based on symptoms

 Country risk assessment, credit risk assessment

 Selecting applicants for different scholarships/graduate 
programs

 Selecting projects for different kinds of funding policies



Linear Utility Function-not explicitly known

Preference classes are well defined 

Xi C  LB(C)u(Xi)UB(C) (unknown to us)

DM can correctly place alternatives in preference 
classes consistent with his/her underlying utility 
function and the bounds 

An Approach
(Köksalan and Ulu, EJOR 2003)



Algorithm

Ask DM to place alternatives in a 
preference class; Ci

To place alternatives in implied preference 

classes, Ci, use:

- Dominance

- Convex combinations 

- Weight space reduction



Dominance



Convex Combinations



Weight Space Reduction

Xi

Xk

increasing utility

criterion 2

criterion 1

Xh

line 1line 2
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Variations

An Interactive sorting method for an additive v
(Koksalan and Ozpeynirci, COR 2009)

An Interactive probabilistic sorting method for an 
additive v (Bugdaci, Koksalan, Ozpeynirci, Serin, 
IIE Transactions 2013)

An Interactive sorting method for quasiconcave v
(Ulu & Koksalan, NRL 2014)



Design (Continuous Solution Space) 
Problem

Further Outline
Prior articulation of preferences
• GP

Progressive articulation of preferences
• Interactive approaches-implicit value fn.

Posterior articulation of preferences

•Steuer, Multiple Criteria Optimization, Wiley 1986

•Miettinen, Nonlinear Multiobjective Opt, Kluwer 1999



Progressive Articulation of 
Preferences

- Geoffrion, Dyer, and Feinberg (GDF) ’72 Man. Sci.

- Benayoun et al. (STEM) ’71 Math. Prog.

- Zionts & Wallenius (Z-W) ’76 Man. Sci.

- Steuer & Choo ’83 Math. Prog.

- Köksalan & Karasakal ’06 JORS 

- Miettinen et al. ’10 EJOR

* Visual Aids

- Korhonen & Laakso ’86 EJOR 

- Korhonen & Wallenius ’88 NRL

and many others



Frank-Wolfe (F-W) NLP (known v)

Source: 
Steuer (1986)



Example



GDF (Man. Sci. 1972)

There are two problems when v is not 
known:
1. We don’t know the gradient (steepest ascent 

direction)

2. We cannot find the best point along that 
direction



GDF (cont.)
To obtain preference info:

1. Locally approximate v by 

Let w1=1. Estimate wi asking the DM local 
tradeoffs between z1 and zi.

Find gradient of  F(x) at the current x.

2. Ask the DM the best of several discrete 
points along the direction 



Art Geoffrion Jim Dyer



The Step Method (STEM) Benayoun, 
deMontgolfier, Tergny, and Larichev (Math. Prog. 1971)

In each iteration, solve (P):

Parameters
i : a weight for obj. i
i: amount DM is willing to sacrifice in obj. i
z*: is the ideal point
J*: Set of objectives DM is willing to sacrifice from

Minimizes a weighted 
Tchebycheff distance 
from the ideal point

Oleg Larichev
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In Criterion Space

z1

z2
z*

-1/

-1/’



Z-W Method (Man. Sci. 1976)

Assume
 v is linear

 zi is linear for all i

 X is a polytope



Z-W (cont.)

1. Find an efficient extreme point solution 
maximizing an estimated linear v

2. Find its adjacent efficient solutions

3. Ask the DM if he/she likes tradeoffs 
towards any adjacent eff solutions
 If not; stop.

 If yes; update the estimated v and go to 1.



Augmented w. Tchebycheff function

Source: Steuer (1986)



Augmented w. Tchebycheff program

(TP)



Examples

Source: Steuer (1986)



Interactive w. Tch. Approach 
Steuer and Choo (Math. Prog. 1983)

Randomly generate weights

With each weight set solve (TP) to find a set 
of eff solns

Ask the DM best of a representative (small) 
set of eff solns

Shrink the weight set around the weights 
favoring chosen solution

Repeat several iterations 



Ralph Steuer



Achievement Scalarizing 
Program (ASP)

ASP projects q onto the efficient frontier
in the direction 1/ (or –1/).



Andrzej Wierzbicki



q2

w

ASP

z1

z2

w

q1

z*1

z*2

Any nondominated point 
can be reached!!



Example: 1=.8, 2=.2
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Parametric ASP (Korhonen and 
Laakso EJOR ’86)
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General Monotone v (Köksalan and 
Karasakal JORS ‘06)

Assume z* is preferred to P1 and P2

Original space Reduced space



Example

z*



Example (cont.)



Example (cont.)

z*
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Nautilus-
Miettinen, Eskelinen, Ruiz, Luque, 

EJOR 2010

Starts from the nadir point

Gets direction information

Works through dominated solutions to 
eventually reach the Pareto front
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All “min” type 



Combinatorial problems (MOCO)
• Mostly bicriteria approaches

• Many “optimize” a given v

• Some generate the nondominated set

• Many use modern heuristic search

• Few interactive approaches

• Review article (Ehrgott & Gandibleux ’00 OR Spektrum)

• Multi-objective Optimization using Evolutionary 

Algorithms (Deb ’01)

• Computationally hard

(NP-complete, #P-complete)
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INTRODUCTION

200-item MOKP with 27260 nondominated points



Demonstration of a 2-point convex cone

QUASICONCAVE VALUE FUNCTION AND CONES
Lokman, Köksalan, Korhonen, Wallenius (ANOR 2016)



QUASICONCAVE VALUE FUNCTION AND CONES

In discrete alternative multi-objective 
problems:

Implementation is straight forward: each
solution is checked against each cone.



In our case:
 The solution space is defined by a set of constraints.

 Nondominated points are implicit. 

 We need to characterize the admissible solution space: 
the non cone-dominated region. 

 This region is typically nonconvex.

 Representing the admissible region is more 
manageable with 2-point cones.

QUASICONCAVE VALUE FUNCTION AND CONES



Idea

QUASICONCAVE VALUE FUNCTION AND CONES



The most preferred point

Problem becomes infeasible.

 The algorithm stops.

The algorithm excludes:

 the less preferred regions

 the incumbent point

AN INTERACTIVE ALGORITHM



AN INTERACTIVE ALGORITHM

Solving MIP Problems Using Convex Preference Cones

Assuming quasiconcavity of DM’s value function:

 iteratively generates new nondominated points

 constructs 2-point convex cones based on the preferences of the
DM.

 keeps an incumbent point and excludes inferior regions and the
incumbent point.

 terminates when problem becomes infeasible since it implies all
remaining nondominated points are inferior to the incumbent.

 guarantees finding the most preferred point



UAV ROUTE PLANNING

 UAV starts from a base, visits all targets, and returns 
to the base 

 Minimize;

• distance

• radar detection threat

→ Biobjective Routing 

Problem

Target 2

Target 3

Target 5

Target 4

Target 1

Diclehan Tezcaner Öztürk
Hacettepe University

Öztürk Tezcaner D. and M. Köksalan, ANOR (2016)



Terrain Types

Discretized Terrain Continuous Terrain



Movement Between Targets

Type 1: No intersection with the
radar region

Type 2: Moves through outer radar 
region only

Type 3: Moves through both radar 
regions 

𝑨 𝑩

𝑨 𝑩

𝑨 𝑩

RDT= ௗ
௧ಳ

௧ಲ

௧ಳ

௧ಲ

Three types of moves:
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 Finding the most preferred solution of a DM with 
linear preference function

ଵ ଶ where 

UAV Routing - Continuous Terrain
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Recent Software

 iMOLPe - interactive Multi-Objective 
Linear Programming explorer

 Visualization of results obtained with 
TRIMAP, STEM, ICW and Pareto Race 
interactive methods.

 Free download: http://www.uc.pt/en/org/inescc/software
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Resources

International Conferences
• 25th International Conference, Summer 2019, Istanbul, Turkey, Ilker Topcu.
• 24th International Conference, July 9-14, 2017, Ottawa, Canada, Sarah Ben Amor.
• 23rd International Conference, August 3-7, 2015, Hamburg, Germany, Martin J. Geiger.
• 22nd International Conference, June 17-21, 2013, Málaga, Spain, Francisco Ruiz.
• 21st International Conference, June 13-17, 2011, Jyväskylä, Finland, Kaisa Miettinen
• 20th International Conference, June 22-26, 2009, Chengdu, China, Yong Shi, S. Wang 
• 19th International Conference, January 7-12, 2008, Auckland, New Zealand, M. Ehrgott
• 18th International Conference, June 19-23, 2006, Chania, Greece, C. Zapounidis 
• 17th International Conference, August 6-11, 2004, Vancouver, Canada, Bill Wedley
• 16th International Conference, 2002, Semmering, Austria, M. Luptacik, R. Vetschera 
• 15th International Conference, July 10-14, 2000, Ankara, Turkey, Murat Köksalan

…

• 1st International Conference, 1975, Jouy-en-Josas, France, H. Thiriez, S. Zionts 

International Society on MCDM: 
http://www.mcdmsociety.org/ :   Free membership thru Web site
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Resources (cont.)

Other groups: 

•INFORMS Section on MCDM

•EURO Working Group on MCDA (MCDA ‘84, Vienna, Austria, 
September 22-24, 2016)

•GP

•MOEA

•…
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Publications

 Many books

 Journal of MCDA

 Springer Proceedings

 Regular OR Journals

 Other Specialized Journals
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History of MCDM
Multiple Criteria Decision Making: From Early History to the 

21st Century by M. Köksalan, J. Wallenius and S. Zionts, 
World Scientific, 2011. 


