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Mathematical Formulation

min z(x) = Cx

subject to Ax = b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n

C ∈ Zp×n −→ p objective functions, k = 1, . . . , p

A ∈ Zm×n −→ m constraints, j = 1, . . . ,m

Combinatorial structure: paths, trees, flows, tours, etc.
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Feasible Sets

X = {x ∈ {0, 1}n : Ax = b}
feasible set in decision space

Y = z(X ) = {Cx : x ∈ X}
feasible set in objective space

conv(Y ) + Rp
=

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

conv(C(X)) + R
p

=

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Lexicographic Optimality

Individual minima
zk(x̂) 5 zk(x) for all x ∈ X

Lexicographic optimality (1)
z(x̂) 5lex z(x) for all x ∈ X

Lexicographic optimality (2)
zπ(x̂) 5lex zπ(x) for all x ∈ X
and some permutation zπ of
(z1, . . . , zp)
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Efficient Solutions

Weakly efficient solutions XwE :
there is no x with z(x) < z(x̂)
z(x̂) is weakly nondominated
YwN := z(XwN)

Efficient solutions XE :
there is no x with z(x) ≤ z(x̂)
z(x̂) is nondominated
YN := z(XE )

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Efficient Solutions

Weakly efficient solutions XwE :
there is no x with z(x) < z(x̂)
z(x̂) is weakly nondominated
YwN := z(XwN)

Efficient solutions XE :
there is no x with z(x) ≤ z(x̂)
z(x̂) is nondominated
YN := z(XE )

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Efficient Solutions

Supported efficient solutions
XSE : There is λ > 0 with
λTCx̂ 5 λTCx for all x ∈ X

Cx̂ is extreme point of
conv(Y ) + Rp

= → XSE1

Cx̂ is in relative interior of
face of conv(Y ) +Rp

= → XSE2

Nonsupported efficient solutions
XNE : Cx̂ is in interior of
conv(Y ) + Rp
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Classification of Efficient Sets

Hansen 1979:

x1, x2 ∈ XE are equivalent if
Cx1 = Cx2

Complete set: X̂ ⊂ XE such
that for all y ∈ YN there is
x ∈ X̂ with z(x) = y

Minimal complete set contains
no equivalent solutions

Maximal complete set contains
all equivalent solutions

XE

XSE XNE

XSE1 XEm XSE2 XNEm

XSE1m
XSE2m
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MOCO Problems Are Hard

Decision problem: Given b ∈ Zp: Does there exist x ∈ X such
that Cx 5 b?

Counting problem: Given b ∈ Zp: How many x ∈ X satisfy
Cx 5 b?

How many efficient solutions (nondominated points) do exist?

Knapsack: Given a1, a2 ∈ Zn and b1, b2 ∈ Z, does there
exist x ∈ {0, 1}n such that (a1)T x 5 b1 and (a2)T x = b2?

Knapsack is NP-complete and #P-complete

Matthias Ehrgott Multiobjective Combinatorial Optimization
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The Unconstrained MOCO Problem

Observation

Multiobjective combinatorial optimization problems are NP-hard,
#P-complete, and intractable.

min
n∑

i=1

cki xi k = 1, . . . , p

subject to xi ∈ {0, 1} i = 1, . . . , n

Matthias Ehrgott Multiobjective Combinatorial Optimization
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The Unconstrained MOCO Problem

Does there exist x ∈ {0, 1}n such that (c1)T x 5 d1 and
(c2)T x 5 d2?

With an instance of Knapsack c1 := a1, d1 = b1,
c2 := −a2, d2 := −b2 is a parsimonious transformation

With cki := (−1)k2i−1 it holds Y = YN
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Multiobjective Shortest Path Problem

NP-hard: Hansen 1979

• • • •

(a1

1
, 0) (a1

2
, 0)

(0, a
2

1
) (0, a

2

2
)

v0 v1 v2 vn

Exponentially many efficient paths

• • • • • • • •

(1, 0) (2, 0) (2
n−1

2 , 0)

(0, 1) (0, 0) (0, 2) (0, 0) (0, 2
n−1

2 ) (0, 0)

. . .
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Complexity results for MOCO problems

MOCO problem Result Reference

Bi-objective shortest path NP-hard [44]
|YSN | is exponential [13]

Bi-objective integer minimum cost flow |YSN1| is exponential [39]
Bi-objective minimum spanning tree NP-hard [3]

|YSN | is exponential [12]
|YSN1| = O(|E|2) [41]
|YNN | is exponential [40]

Bi-objective global minimum cut |YN | = O(|V|7) [1]
Bi-objective assignment NP-hard [44]

#P-hard [27]
Bi-objective search problem on a line NP-hard [30]

|YN | is exponential [30]
Bi-objective uniform matroid NP-complete [8]
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Number of Efficient Solutions

Intractable: XE , even YSN , can be exponential in the size of
the instance

Number of nondominated points for biobjective shortest path
and assignment problems (Raith and Ehrgott 2009, Przybylski
et al. 2008)

Shortest Path Assignment
Nodes Edges |YN | n |YN |
4,902 19,596 6 10 13
4,902 19,596 1,594 20 82
3,000 33,224 15 40 243

14,000 153,742 17 60 470
330,386 1,202,458 21 80 671
330,386 1,202,458 24 100 947
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Number of Efficient Solutions

Empirically often

|XNE | grows exponentially with instance size

|XSE | grows polynomially with instance size

but this depends on numerical values of C
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Connectedness of Efficient Solutions

Define EG = (V, E), where V are efficient solutions of a MOCO
problem and [x1, x2] ∈ E if and only if x2 ∈ N(x1) and x1 ∈ N(x2)

Theorem

The adjacency graph of the set XE of an instance of the
bi-objective shortest path, bi-objective minimum spanning tree,
and bi-objective integer minimum cost flow problems are not
connected in general.
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Labelling Algorithms for Shortest Path Problems

Digraph G = (V,A) with arc costs ckij , k = 1, . . . , p, (i , j) ∈ A
Given origin s ∈ V, destination t ∈ V find efficient paths from
s to t:

min
P∈P

∑
(i ,j)∈P

cij

where P is set of all s-t paths

Assume that all ckij = 0

Proposition

Let Pst be an efficient path from s to t. Then any subpath Puv

from u to v, where u and v are vertices on Pst is an efficient path
from u to v.
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Labelling Algorithms for Shortest Path Problem

Concatenations of efficient paths need not be efficient!

1

2

3

4

(0, 10) (0, 10)

(1, 9) (1, 9)

(1, 15)

1-3 is efficient, 3-4 is efficient, 1-3-4 is not
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Labelling Algorithms for Shortest Path Problems

For a labelling algorithm we need

Sets of nondominated labels at each node

A list of permanent and temporary labels

Make sure that a permanent label defines an efficient path:
Choose the lexicographically smallest label from temporary list

Lemma

If P1 and P2 are two paths between nodes s and t and
c(P1) ≤ c(P2) then c(P1) <lex c(P2).

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Multiobjective Label Correcting Algorithm

Label setting fails if negative arc lengths are permitted

Negative cycles C

Case 1: If
∑

a∈C cka < 0 and
∑

a∈C c ja > 0 for j 6= k there are
infinitely many efficient paths
Case 2: If

∑
a∈C ca ≤ 0 there is no efficient path

A label correcting algorithm is required
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Greedy Algorithms and Spanning Trees

Graph G = (V,A) with edge costs ckij , k = 1, . . . , p; (i , j) ∈ E
Find efficient spanning trees of G:

min
T∈T

∑
[i ,j]∈T

cij

where T is set of all spanning trees of G
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The Multiobjective Spanning Tree Problem

Theorem (Hamacher and Ruhe
1994)

T efficient spanning tree of G
1 Let e ∈ E(T ) be an edge of

T . Let (V(T1), E(T1)) and
(V(T2), E(T2)) be the two
connected components of
G \ {e}. Let
C (e) := {f = (vi , vj) ∈ E :
vi ∈ V(T1), vj ∈ V(T2)} be
the cut defined by deleting
e. Then c(e) ∈ min{c(f ) :
f ∈ C (e)}.

e

T1 T2

edges in C(e)

This enables multiobjective Prim/Kruskal algorithmsMatthias Ehrgott Multiobjective Combinatorial Optimization
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The Multiobjective Spanning Tree Problem

Theorem (Hamacher and Ruhe
1994)

T efficient spanning tree of G
1 Let f ∈ E \ E(T ) and let

P(f ) be the unique path in
T connecting the end nodes
of f . Then c(f ) ≤ c(e) does
not hold for any e ∈ P(f ).

f P (f)
This enables multiobjective Prim/Kruskal algorithms
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Multi-objective Matroid Problems

Theorem (Serafini 1986)

Let B be an efficient matroid base. Then there exists a topological
order of the elements of E such that the greedy algorithm applied
to this order yields B.
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Principle and Properties of Scalarization

Convert multiobjective problem to (parameterized) single objective
problem and solve repeatedly with different parameter values

Desirable properties of scalarizations: (Wierzbicki 1984)

Correctness: Optimal solutions are (weakly) efficient

Completeness: All efficient solutions can be found

Computability: Scalarization is not harder than single
objective version of problem (theory and practice)

Linearity: Scalarization has linear formulation
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Scalarization Methods

Weighted sum:

min
x∈X

{
λT z(x)

}
ε-constraint:
min
x∈X
{zl(x) : zk(x) ≤ εk , k 6= l}

Weighted Chebychev:

min
x∈X

{
max

k=1,...,p
νk(zk(x)− y Ik)

}
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General Formulation

min
x∈X

{
p

max
k=1

[νk(ckx − ρk)] +

p∑
k=1

[λk(ckx − ρk)]

}
subject to ckx ≤ εk k = 1, . . . , p

Includes Correct Complete Computable Linear

Weighted sum + - + +
ε-constraint + + - +
Chebychev + (+) (-) +

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

General Formulation

Theorem (Ehrgott 2005)

1 The general scalarization is NP-hard.

2 An optimal solution of the Lagrangian dual of the linearized
general scalarization is a supported efficient solution.
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Method of Elastic Constraints

min
x∈X

clx +
∑
k 6=l

µkwk

s.t. ckx + vk − wk ≤ εk k 6= l

vk ,wk ≥ 0 k 6= l
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Method of Elastic Constraints

Theorem (Ehrgott and Ryan 2002)

The method of elastic constraints

is correct and complete,

contains the weighted sum and ε-constraint method as special
cases,

is NP-hard.

... but (often) solvable in practice because

it “respects” problem structure

it “limits damage” of ε-constraints
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How many scalarised problems need to be solved?

Theorem

1 In the case p = 2, the number of scalarised single objective
problems to be solved in order to determine YN is bounded by
2|YN | − 1 (Chalmet et al., 1986; Ralphs et al., 2006). In case
the ε-constrained scalarisation is used, this bound is |YN |+ 1
(Laumanns et al. 2006).

2 In the case p = 3 the bound is 3|YN | − 2 and 2|YN | − 1 for
the ε-constraint scalarisation (Klamroth and Dächert 2015).

For p > 3 the general bound is O
(
|YN |b

p
2
c
)

(Klamroth et al.,

2015).
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Algorithms Based on Scalarisation

MOCO problem Scalarisation Reference

BO binary LP Weighted sum with ε-constraints [4]
BO knapsack, capacitated network routing Weighted Chebychev [37]
TO multidimensional knapsack Lexicographic ε-constraint [19]
Generic Weighted sum with ε-constraints [17]
TO three-dimensional knapsack General scalarisation [6]
BO integer minimum cost flow (*) ε-constraint [10]
BO knapsack Lexicographic weighted Chebychev [42]
BO multidimensional knapsack Weighted sum with constraints [47]
TO three-dimensional knapsack Lexicographic ε-constraint [28]
MO knapsack, shortest path, spanning tree Lexicographic ε-constraint [21]
MO three-dimensional knapsack, assignment Lexicographic ε-constraint [29]
MO TSP
TO knapsack, assignment Lexicographic ε-constraint [15]
BO knapsack Augmented weighted Chebychev [5]
MO integer LP Single objective with constraints [18]
BO, TO multidimensional knapsack Augmented ε-constraint [24]
BO shortest path
BO set partitioning (*) Elastic constraint [9], [48]
BO TSP with profits (*) ε-constraint [2]
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2 Extending Single Objective Algorithms

3 Algorithms Based on Scalarization

4 The Two Phase Method

5 Multi-objective Branch and Bound

6 Conclusion
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The Two Phase Method with 2 Objectives

Phase 1: Compute XSE(1)

1 Find lexicographic solutions
2 Recursively:

Calculate λ
Solve min

x∈X
λTCx

Phase 2: Compute XNE

1 Solve by triangle
2 Use neighborhood (wrong)
3 Use constraints (bad)
4 Use variable fixing (possible)
5 Use ranking (good)
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Bounds on λTCx in Phase Two

{x i : 0 5 i 5 q} candidates for XNE sorted by increasing z1 in ∆(x r , x s)

γ :=
q−1
max
i=0
{λ1z1(x i+1) + λ2z2(x i )}

β0 := max
{
γ, λ1z1(x0) + λ2z2(x r ), λ1z1(x s) + λ2z2(xq)

}
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bound used by (Tuyttens et al. , 2000)
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local nadir
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Bounds on λTCx in Phase Two

{x i : 0 5 i 5 q} candidates for XNE sorted by increasing z1 in ∆(x r , x s)

δ1 :=
q

max
i=0
{λ1z1(x i ) + λ

2z2(x i )}

δ2 :=
q

max
i=1
{λ1(z1(x i )− 1) + λ

2(z2(x i−1)− 1)}

β1 := max
{
δ1, δ2, λ

1(z1(x0)− 1) + λ
2(z2(x r )− 1), λ1(z1(xs )− 1) + λ

2(z2(xq)− 1)
}
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improved bound
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one unit down and left to local nadir
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Bounds on λTCx in Phase Two

{x i : 0 5 i 5 q} candidates for XNE sorted by increasing z1 in ∆(x r , x s)

β2 := max
{
δ2, λ

1(z1(x0)− 1) + λ2(z2(x r )− 1), λ1(z1(x s)− 1) + λ2(z2(xn)− 1)
}
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an improved bound for a not maximal complete set
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one unit down and left to local nadir
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Two Phase Algorithm for Biobjective Assignment

Comparison with CPLEX 9.0 using constraints (3.4 GHz, 4 GB
RAM)

Range of ckij CPLEX 9.0 Ranking

[0, 20] 200.63 85.58
[0, 40] 512.96 83.63
[0, 60] 1730.65 149.73
[0, 80] 3766.00 274.06

[0, 100] 4822.00 275.09

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Two Phase Algorithm for Biobjective Assignment

Objective values of an AP with cij ∈ {0, . . . , r − 1}
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distribution of an 10*10 instance
10! * N(10 * moy(c_{ij}),10 * var(c_{ij})

Proof by Przybylski and Bourdon 2006:

µ = n(r−1)
2 , σ2 = n(r2−1)

12
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The Two Phase Method with 3 Objectives

Hyperplane defined by 3 points, possibly 6 lexicographically
optimal points

Which hyperplane to choose?

Normal vector defined by 3 nondominated points may not be
positive

How to start the method?
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Weight Space Decomposition

W 0 :=

{
λ : λ1 > 0, . . . , λp > 0, λp = 1−

p−1∑
k=1

λk

}
W 0(y) := {λ ∈W 0 : λT y 5 λtY ′ for all y ′ ∈ Y }
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Weight Space Decomposition

Proposition

1 If y is a supported extreme point then W 0(y) is a polytope of
dim p − 1.

2 Let y1 and y2 be two supported points and
W 0(y1) ∩W 0(y2) 6= ∅ then W 0(y1) and W 0(y2) have a
common face.

Two supported extreme points y1 and y2 are adjacent if
W 0(y1) ∩W 0(y2) is a polytope of dimension p − 2

Proposition

Let {y1, . . . , yn} be the set of supported extreme points, then
W 0 =

⋃n
i=1 W

0(y i ).

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Weight Space Decomposition

Proposition (Optimality Condition)

If S is a set of supported points then

YSN1 ⊆ S ⇐⇒W 0 =
⋃
y∈S

W 0(y).

Let S be a set of supported points

Let W 0
p (y) =

{
λ ∈W 0 : 〈λ, y〉 ≤ 〈λ, y∗〉 for all y∗ ∈ S

}
W 0(y) ⊆W 0

p (y) for all y ∈ S

W 0 =
⋃

y∈S W
0
p (y)
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An Example

C1 =


2 5 4 7
3 3 5 7
3 8 4 2
6 5 2 5

 , C2 =


3 3 6 2
5 3 7 3
5 2 7 4
4 6 3 5

 , C3 =


4 2 5 3
5 3 4 3
4 3 5 2
6 4 7 3



Lexicographically optimal points: y1 = (9, 13, 16),
y2 = (19, 11, 17), y3 = (18, 20, 13)

S = {y1, y2, y3}
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An Example
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An Example
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An Example
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An Example
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An Example
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Phase 2 for 3 Objectives

Intersection points between 3 weight sets are used for ranking
solutions of weighted sum problems

But areas for nonsupported nondominated points do not
decompose as for p = 2

Bounds can be generalised

Recursive algorithm for p > 3 is possible
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Numerical Results

Size |YN | SC 2004 T-P 2003 LZT 2005 2 Phase

5 12 0.15 0.04 0.15 0.00
10 221 99865.00 97.30 41.70 0.08
15 483 × 544.53 172.29 0.36
20 1942 × × 1607.92 4.51
25 3750 × × 5218.00 30.13
30 5195 × × 15579.00 55.87
35 10498 × × 101751.00 109.96
40 14733 × × × 229.05
45 23941 × × × 471.60
50 29193 × × × 802.68
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Two Phase Algorithms

MOCO problem Phase 1 Approach Phase 2 Approach Reference

Bi-objective integer network flow Parametric Local search [20]
Bi-objective integer network flow Parametric Local search [43]
Bi-objective integer network flow Parametric Ranking [36]
Bi-objective assignment Dichotomic Variable fixing [51]
Bi-objective assignment Dichotomic Variable fixing [49]
Bi-objective assignment Dichotomic Ranking [32]
Three-objective assignment Dichotomic Ranking [33, 34]
Bi-objective multimodal assignment Dichotomic Ranking [31]
Bi-objective spanning tree Dichotomic Ranking, branch and bound [46]
Bi-objective shortest path Parametric Label correcting [26]
Bi-objective shortest path Dichotomic Label correcting, label setting [35]

Parametric Ranking
Bi-objective knapsack Dichotomic Branch and bound [53]
Bi-objective knapsack Dichotomic Ranking [14]
Three-objective knapsack Dichotomic Ranking [14]
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Multi-objective Branch and Bound

Branching: As in single
objective case

Bounding: Ideal point of
problem at node is dominated
by efficient solution

Branching may be very
ineffective

Use lower and upper bound sets
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Bound Sets

Ehrgott and Gandibleux 2005:
1 Lower bound set L

is Rp
=-closed

is Rp
=-bounded

YN ⊂ L + Rp
=

L ⊂
(
L + Rp

=

)
N

2 Upper bound set U

is Rp
=-closed

is Rp
=-bounded

YN ∈ cl
[(

U + Rp
=

)c]
U ⊂

(
U + Rp

=

)
N
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Ingredients of a MOBB Algorithm

Branching and Node Selection: Branching is the same as
single objective case, but branching rules often use objective
function information (e.g. knapsack problems)

Bounding and Fathoming Nodes: Terminate as soon as upper
bound set U = YN and fathom if

1 The subproblem has an empty feasible set (infeasibility);
2 The non-dominated set YN of the subproblem belongs to L

(optimality);
3 For every l ∈ L there exists some u ∈ U such that u 5 l

(dominance).
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Fathoming
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Figure: The node can be
fathomed by dominance
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Figure: The node can be
fathomed by dominance
assuming Y ⊂ Zp

Matthias Ehrgott Multiobjective Combinatorial Optimization



Definitions and Properties
Extending Single Objective Algorithms

Algorithms Based on Scalarization
The Two Phase Method

Multi-objective Branch and Bound
Conclusion

Multi-objective Branch and Bound Algorithms

MOCO problem Upper bound Lower bound Branching Node sel. Feas. sol. Reference

MO binary Incumbent set Utopia point Variable Depth-first Variable [16]
fixing fixing

BO knapsack Incumbent set Utopia point Variable Depth-first Variable [50]
fixing fixing

BO knapsack Adaptation of [50] restricted to triangles [53]
BO spanning tree Incumbent set Utopia point Edge Depth-first At leaves [38]

fixing
BO spanning tree Incumbent set Convex Edge Depth-first Convex [45]

relaxation fixing relaxation
at nodes

MO knapsack Incumbent set Ideal point Variable Depth-first At leaves [11]
LP relaxation fixing

TO knapsack Incumbent set Utopia point Variable Depth-first At leaves [14]
fixing

TO knapsack Incumbent set Convex Variable Lexicographic Part of UB [14]
relaxation fixing order of 5

criteria
BO assignment Adaptation of [45] restricted to triangles [7]
BO flow shop No details No details No details Depth-first No details [25]
BO mixed integer Incumbent set Ideal point of Variable Depth-first LP at [22, 23]

LP relaxation fixing leaves
BO mixed integer Extended Ideal point of Variable Depth-first LP at [52]

incumbent set LP relaxation fixing leaves
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Conclusion

Summarised main approaches used within exact methods for
MOCO

Challenge 1: Understand importance of objective function
values

Challenge 2: Polyhedral theory for MOCO scalarization

Challenge 3: Toolbox to build exact algorithms for challenging
problems
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In A. Bachem, U. Derigs, M. Jünger, and R. Schrader, editors, Operations Research 93, pages 359–361.
Physica Verlag, Heidelberg, 1994.
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