Decision Modelling II

Alexis Tsoukiàs

LAMSADE - CNRS, PSL University, Université Paris-Dauphine http://www.lamsade.dauphine.fr/~tsoukias

MCDM Summer School 2018

ヘロト 人間 ト ヘヨト ヘヨト

Outline

- Preferences Handling
 - Problem Setting
 - Basics
 - Preference Modeling
 - Preference Aggregation
- 2 Social Choice Theory
- Borda and Condorcet
 - The Borda path
 - The Condorcet path

Conclusions

Problem Setting Basics Preference Modeling Preference Aggregation

...

- Preferences are "rational" desires.
- Preferences are at the basis of any decision aiding activity.
- There are no decisions without preferences.
- Preferences, Values, Objectives, Desires, Utilities, Beliefs,

(日)

Problem Setting Basics Preference Modeling Preference Aggregation

Preference Statements:

- I like red shoes.
- I do not like brown sugar.
- I prefer Maria to Mario.
- I do not want tea with milk.
- Cost is more important than safety.
- I prefer flying to Athens than having a suite at Istanbul.
- I prefer red wine only if there is no fish plate available.

< 🗇 > < 🖻 >

Problem Setting Basics Preference Modeling Preference Aggregation

Preference Statements:

Four issues:

Relative vs Absolute statements Single vs Multi-attribute statements Positive vs Negative statements First vs Second order statements

イロト イポト イヨト イヨト

Problem Setting Basics Preference Modeling Preference Aggregation

What are the problems?

- How to learn preferences?
- How to model preferences?
- How to aggregate preferences?
- How to use preferences for recommending?

(日)

Problem Setting Basics Preference Modeling Preference Aggregation

Binary relations

- \succeq : binary relation on a set (A).
- $\succeq \subseteq A \times A \text{ or } A \times P \cup P \times A.$
- \succeq is reflexive.

What is that?

If $x \succeq y$ stands for x is at least as good as y, then the asymmetric part of $\succeq (\succ: x \succeq y \land \neg(y \succeq x))$ stands for strict preference. The symmetric part stands for indifference $(\sim_1: x \succeq y \land y \succeq x)$ or incomparability $(\sim_2: \neg(x \succeq y) \land \neg(y \succeq x)).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Problem Setting Basics Preference Modeling Preference Aggregation

More binary relations

 We can further separate the asymmetric (symmetric) part in more relations representing hesitation or intensity of preference.

$$\succ = \succ_1 \cup \succ_2 \cdots \succ_n$$

- We can get rid of the symmetric part since any symmetric relation can be viewed as the union of two asymmetric relations and the identity.
- We can also have valued relations such that:
 v(x ≻ y) ∈ [0, 1]

ヘロト ヘワト ヘビト ヘビト

Problem Setting Basics Preference Modeling Preference Aggregation

Binary relations properties

Binary relations have specific properties such as:

- Irreflexive: $\forall x \neg (x \succ x);$
- Asymmetric: $\forall x, y \ x \succ y \rightarrow \neg (y \succ x);$
- Transitive: $\forall x, y, z \ x \succ y \land y \succ z \rightarrow x \succ z$;
- Ferrers; $\forall x, y, z, w \ x \succ y \land z \succ w \rightarrow x \succ w \lor z \succ y$;

<ロ> (四) (四) (三) (三) (三)

Problem Setting Basics Preference Modeling Preference Aggregation

Numbers

$x \succeq y \quad \Leftrightarrow \quad \Phi(x,y) \ge 0$

where:

 $\Phi : A \times A \mapsto \mathbb{R}$. Simple case $\Phi(x, y) = f(x) - f(y); f : A \mapsto \mathbb{R}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Problem Setting Basics Preference Modeling Preference Aggregation

Preference Structures

A preference structure

is a collection of binary relations $\sim_1, \dots \sim_m, \succ_1, \dots \succ_n$ such that:

- they are pair-disjoint;
- $\sim_1 \cup \cdots \sim_m \cup \succ_1 \cup \cdots \succ_n = A \times A;$
- \sim_i are symmetric and \succ_j are asymmetric;
- possibly they are identified by their properties.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Problem Setting Basics Preference Modeling Preference Aggregation

\sim_1, \sim_2, \succ Preference Structures

Independently from the nature of the set *A* (enumerated, combinatorial etc.), consider $x, y \in A$ as whole elements. Then:

If \succeq is a weak order then:

 \succ is a strict partial order, \sim_1 is an equivalence relation and \sim_2 is empty.

If \succeq is an interval order then:

 \succ is a partial order of dimension two, \sim_1 is not transitive and \sim_2 is empty.

イロト 不得 とくほ とくほ とう

Problem Setting Basics Preference Modeling Preference Aggregation

\sim_1, \sim_2, \succ Preference Structures

Independently from the nature of the set *A* (enumerated, combinatorial etc.), consider $x, y \in A$ as whole elements. Then:

If \succeq is a weak order then:

 \succ is a strict partial order, \sim_1 is an equivalence relation and \sim_2 is empty.

If \succeq is an interval order then:

 \succ is a partial order of dimension two, \sim_1 is not transitive and \sim_2 is empty.

ヘロア 人間 アメヨア 人口 ア

Problem Setting Basics Preference Modeling Preference Aggregation

$\sim_1, \sim_2, \succ_1 \succ_2$ Preference Structures

If \succeq is a *PQI* interval order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is asymmetrically transitive and \sim_2 is empty.

If \succeq is a pseudo order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is non transitive and \sim_2 is empty.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Problem Setting Basics Preference Modeling Preference Aggregation

$\sim_1, \sim_2, \succ_1 \succ_2$ Preference Structures

If \succeq is a *PQI* interval order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is asymmetrically transitive and \sim_2 is empty.

If \succeq is a pseudo order then:

 \succ_1 is transitive, \succ_2 is quasi transitive, \sim_1 is non transitive and \sim_2 is empty.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Problem Setting Basics Preference Modeling Preference Aggregation

What characterises such structures?

Characteristic Properties

Weak Orders are complete and transitive relations. Interval Orders are complete and Ferrers relations.

Numerical Representations

w.o. $\Leftrightarrow \exists f : A \mapsto \mathbb{R} : x \succeq y \leftrightarrow f(x) \ge f(y)$ i.o. $\Leftrightarrow \exists f, g : A \mapsto \mathbb{R} : f(x) > g(x); x \succeq y \leftrightarrow f(x) \ge g(y)$

イロン 不良 とくほう 不良 とうほ

Problem Setting Basics Preference Modeling Preference Aggregation

What characterises such structures?

Characteristic Properties

Weak Orders are complete and transitive relations. Interval Orders are complete and Ferrers relations.

Numerical Representations

w.o.
$$\Leftrightarrow \exists f : A \mapsto \mathbb{R} : x \succeq y \leftrightarrow f(x) \ge f(y)$$

i.o. $\Leftrightarrow \exists f, g : A \mapsto \mathbb{R} : f(x) > g(x); x \succeq y \leftrightarrow f(x) \ge g(y)$

・ロト ・ 理 ト ・ ヨ ト ・

Problem Setting Basics Preference Modeling Preference Aggregation

More about structures

Characteristic Properties

PQI Interval Orders are complete and generalised Ferrers relations.

Pseudo Orders are coherent bi-orders.

Numerical Representations

 $\begin{aligned} & PQl \text{ i.o. } \Leftrightarrow \exists f,g: A \mapsto \mathbb{R} : f(x) > g(x); \\ & x \succ_1 y \iff g(x) > f(y); x \succ_2 y \iff f(x) > f(y) > g(x) \\ & P.O. \ \Leftrightarrow \exists f,t,g: A \mapsto \mathbb{R} : f(x) > t(x) > g(x); \\ & x \succ_1 y \iff g(x) > f(y); x \succ_2 y \iff g(x) > t(y) \end{aligned}$

ヘロト 人間 とくほとくほとう

Problem Setting Basics Preference Modeling Preference Aggregation

More about structures

Characteristic Properties

PQI Interval Orders are complete and generalised Ferrers relations.

Pseudo Orders are coherent bi-orders.

Numerical Representations

ヘロト ヘアト ヘビト ヘビト

Problem Setting Basics Preference Modeling Preference Aggregation

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$

A special case is when Φ is increasing to its first *n* arguments and decreasing to the following *n* arguments: it then can be an additive function. See more in conjoint measurement theory.

イロト 不得 とくほ とくほ とう

Problem Setting Basics Preference Modeling Preference Aggregation

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$

A special case is when Φ is increasing to its first *n* arguments and decreasing to the following *n* arguments: it then can be an additive function. See more in conjoint measurement theory.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Problem Setting Basics Preference Modeling Preference Aggregation

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$$

A special case is when Φ is increasing to its first *n* arguments and decreasing to the following *n* arguments: it then can be an additive function. See more in conjoint measurement theory.

イロト イポト イヨト イヨト

Preferences Handling Problem Social Choice Theory Basics Borda and Condorcet Prefere Conclusions Prefere

Problem Setting Basics Preference Modeling Preference Aggregation

The Problem

Suppose we have *n* ordering relations $\succeq_1 \cdots \succeq_n$ on the set *A*. We are looking for an overall ordering relation \succeq on *A* "representing" the different orders.

ヘロト ヘアト ヘビト ヘビト

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	4	1	2	4	1
В	2	3	1	2	3	1	2
С	3	1	3	3	1	2	3
D	4	4	2	4	4	3	4

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g	B(x)
Α	1	2	4	1	2	4	1	15
В	2	3	1	2	3	1	2	14
С	3	1	3	3	1	2	3	16
D	4	4	2	4	4	3	4	25

The Borda count gives B>A>C>D

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

イロト 不得 とくほ とくほ とう

∃ 𝒫𝔅

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g	B(x)
Α	1	2	3	1	2	3	1	13
В	2	3	1	2	3	1	2	14
С	3	1	2	3	1	2	3	15

If D is not there then A>B>C, instead of B>A>C

・ロト ・ 理 ト ・ ヨ ト ・

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

・ロト ・ 理 ト ・ ヨ ト ・

₹ 990

Borda vs. Condorcet

Four candidates and seven examiners with the following preferences.

	а	b	С	d	е	f	g
Α	1	2	3	1	2	3	1
В	2	3	1	2	3	1	2
С	3	1	2	3	1	2	3

The Condorcet principle gives A>B>C>A !!!!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

E DQC

Arrow's Theorem

Given *N* rational voters over a set of more than 3 candidates can we found a social choice procedure resulting in a social complete order of the candidates such that it respects the following axioms?

- Universality: the method should be able to deal with any configuration of ordered lists;
- Unanimity: the method should respect a unanimous preference of the voters;
- Independence: the comparison of two candidates should be based only on their respective standings in the ordered lists of the voters.

ヘロン ヘアン ヘビン ヘビン

There is only one solution: the dictator!!

If we add no-dictatorship among the axioms then there is no solution.

イロト 不得 とくほ とくほとう

Gibbard-Satterthwaite's Theorem

When the number of candidates is larger than two, there exists no aggregation method satisfying simultaneously the properties of universal domain, non-manipulability and non-dictatorship.

イロト イポト イヨト イヨト

The Borda path The Condorcet path

Why MCDA is not Social Choice?

Social Choice	MCDA
Total Orders	Any type of order
Equal importance	Variable importance
of voters	of criteria
As many voters	Few coherent
as necessary	criteria
No prior	Existing prior
information	information

<ロト <回 > < 注 > < 注 > 、

æ

The Borda path The Condorcet path

Counting values

$$x \succeq y \Leftrightarrow \sum_j r_j(x) \ge \sum_j r_j(y)$$

What do we need to know?

Alexis Tsoukiàs Decision Modelling II

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔄

The Borda path The Condorcet path

Counting values

$$x \succeq y \Leftrightarrow \sum_j r_j(x) \ge \sum_j r_j(y)$$

What do we need to know?

the primitives: $\succeq_j \subseteq A \times A$ Differences of preferences:

- $(xy)_1 \succcurlyeq (zw)_1$
- $(xy)_1 \succcurlyeq (zw)_2$

くロト (過) (目) (日)

The Borda path The Condorcet path

How do we learn that?

- Directly through a standard protocol.
- Indirectly:
 - through pairwise comparisons (AHP, MACBETH etc.);
 - through learning from examples (regression, rough sets, decision trees etc.).

ヘロト 人間 ト ヘヨト ヘヨト
The Borda path The Condorcet path

Is this sufficient?

NO!

Are preferences independent? $r \succ w$ $f \succ m$ But *rf* is not better than *wf* ...

Non linear aggregation procedures

ヘロト 人間 ト ヘヨト ヘヨト

The Borda path The Condorcet path

What is the output?

• Value functions on each criterion.

- A global value function.
- Rankings, choices, but also ratings if relevant reference points are provided on the value function.

ヘロト ヘアト ヘビト ヘビト

The Borda path The Condorcet path

What is the output?

• Value functions on each criterion.

- A global value function.
- Rankings, choices, but also ratings if relevant reference points are provided on the value function.

ヘロト 人間 ト ヘヨト ヘヨト

The Borda path The Condorcet path

What is the output?

- Value functions on each criterion.
- A global value function.
- Rankings, choices, but also ratings if relevant reference points are provided on the value function.

ヘロト 人間 ト ヘヨト ヘヨト

The Borda path The Condorcet path

Counting preferences

$$x \succeq y \Leftrightarrow H_{xy} \ge H_{yx}$$

What do we need to know?

Alexis Tsoukiàs Decision Modelling II

ヘロト 人間 とくほとくほとう

æ

The Borda path The Condorcet path

Counting preferences

$$x \succeq y \Leftrightarrow H_{xy} \ge H_{yx}$$

What do we need to know?

the primitives: $\succeq_j \subseteq A \times A$ An ordering relation on 2^{\succeq_j}

くロト (過) (目) (日)

The Borda path The Condorcet path

How do we learn that?

- Preferences are "given".
- Preferences on 2[≥]_j:
 - directly;
 - coalition games;
 - learning from examples.

ヘロト 人間 ト ヘヨト ヘヨト

The Borda path The Condorcet path

Is this sufficient?

NO!

- The relation \succeq is not an ordering relation.
- In order to do so we transform the graph induced by \succeq .

イロト イポト イヨト イヨト

The Borda path The Condorcet path

Is this sufficient?

NO!

- The relation \succeq is not an ordering relation.
- We need to construct an ordering relation ≽ "as near as possible" to *b*.
- In order to do so we transform the graph induced by \succeq .

ヘロン 人間 とくほ とくほ とう

The Borda path The Condorcet path

Is this sufficient?

NO!

- The relation \succeq is not an ordering relation.
- We need to construct an ordering relation ≽ "as near as possible" to *b*.
- In order to do so we transform the graph induced by \succeq .

ヘロト ヘアト ヘビト ヘビト

The Borda path The Condorcet path

General idea: coalitions

Given a set A and a set of \succeq_i binary relations on A (the criteria) we define:

$$x \succeq y \Leftrightarrow C^+(x,y) \trianglerighteq C^+(y,x)$$
 and $C^-(x,y) \trianglelefteq C^-(y,x)$

where:

- $C^+(x, y)$: "importance" of the coalition of criteria supporting *x* wrt to *y*.

- $C^{-}(x, y)$: "importance" of the coalition of criteria against *x* wrt to *y*.

ヘロン 人間 とくほ とくほ とう

э.

The Borda path The Condorcet path

How it works? 1

Additive Positive Importance

ヘロト 人間 とくほとくほとう

The Borda path The Condorcet path

How it works? 1

Additive Positive Importance

$$\mathcal{C}^+(x,y) = \sum_{j \in J^{\pm}} w_j^+$$

where: w_j^+ : "positive importance" of criterion *i* $J^{\pm} = \{h_j : x \succeq_j y\}$

1

ヘロン 人間 とくほ とくほ とう

The Borda path The Condorcet path

How it works? 1

Additive Positive Importance

$$\mathcal{C}^+(x,y) = \sum_{j \in J^{\pm}} w_j^+$$

where: w_j^+ : "positive importance" of criterion *i* $J^{\pm} = \{h_j : x \succeq_j y\}$

Then we can fix a majority threshold $\boldsymbol{\delta}$ and have

$$x \succeq^+ y \Leftrightarrow C^+(x,y) \ge \delta$$

・ロン・西方・ ・ ヨン・ ヨン・

The Borda path The Condorcet path

How it works? 1

Additive Positive Importance

$$\mathcal{C}^+(x,y) = \sum_{j \in J^{\pm}} w_j^+$$

where: w_j^+ : "positive importance" of criterion *i* $J^{\pm} = \{h_j : x \succeq_j y\}$

Then we can fix a majority threshold $\boldsymbol{\delta}$ and have

$$x \succeq^+ y \Leftrightarrow C^+(x,y) \ge \delta$$

Where "positive importance" comes from?

The Borda path The Condorcet path

How it works? 2

Max Negative Importance

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄

The Borda path The Condorcet path

How it works? 2

Max Negative Importance

$$C^-(x,y) = \max_{j\in J^-} w_j^-$$

where:

 w_j^- : "negative importance" of criterion *i* $J^- = \{h_j : v_j(x, y)\}$

・ロト ・ 理 ト ・ ヨ ト ・

The Borda path The Condorcet path

How it works? 2

Max Negative Importance

$$C^-(x,y) = \max_{j\in J^-} w_j^-$$

where:

 w_j^- : "negative importance" of criterion *i* $J^- = \{h_j : v_j(x, y)\}$

Then we can fix a veto threshold γ and have

$$\mathbf{x} \succeq^{-} \mathbf{y} \Leftrightarrow \mathbf{C}^{-}(\mathbf{x}, \mathbf{y}) \geq \gamma$$

ヘロト 人間 とくほとくほとう

The Borda path The Condorcet path

How it works? 2

Max Negative Importance

$$C^-(x,y) = \max_{j\in J^-} w_j^-$$

where:

 w_j^- : "negative importance" of criterion *i* $J^- = \{h_j : v_j(x, y)\}$

Then we can fix a veto threshold γ and have

$$x \succeq^{-} y \Leftrightarrow C^{-}(x, y) \geq \gamma$$

Where "negative importance" comes from?

프 에 에 프 어 - -

< 🗇 ▶

The Borda path The Condorcet path

The United Nations Security Council

Positive Importance

15 members each having the same positive importance $w_j^+ = \frac{1}{15}, \, \delta = \frac{9}{15}.$

Negative Importance

10 members with 0 negative importance and 5 (the permanent members) with $w_i^- = 1$, $\gamma = 1$.

イロト 不得 とくほ とくほ とう

The Borda path The Condorcet path

The United Nations Security Council

Positive Importance

15 members each having the same positive importance $w_j^+ = \frac{1}{15}, \, \delta = \frac{9}{15}.$

Negative Importance

10 members with 0 negative importance and 5 (the permanent members) with $w_i^- = 1$, $\gamma = 1$.

ヘロン ヘアン ヘビン ヘビン

The Borda path The Condorcet path

Outranking Principle

$$x \succeq y \Leftrightarrow x \succeq^+ y \text{ and } \neg(x \succeq^- y)$$

Thus:

$$x \succeq y \Leftrightarrow C^+(x,y) \ge \delta \land C^-(x,y) < \gamma$$

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄

The Borda path The Condorcet path

Outranking Principle

$$x \succeq y \Leftrightarrow x \succeq^+ y \text{ and } \neg(x \succeq^- y)$$

Thus:

$$x \succeq y \Leftrightarrow C^+(x, y) \ge \delta \land C^-(x, y) < \gamma$$

NB

The relation \succeq is not an ordering relation. Specific algorithms are used in order to move from \succeq to an ordering relation \succcurlyeq

ヘロト ヘアト ヘビト ヘビト

The Borda path The Condorcet path

What is importance?

Where w_j^+ , w_j^- and δ come from?

Further preferential information is necessary, usually under form of multi-attribute comparisons. That will provide information about the decisive coalitions.

くロト (過) (目) (日)

The Borda path The Condorcet path

What is importance?

Where w_j^+ , w_j^- and δ come from?

Further preferential information is necessary, usually under form of multi-attribute comparisons. That will provide information about the decisive coalitions.

Example

Given a set of criteria and a set of decisive coalitions (J^{\pm}) we can solve:

 $\max \delta \\ \text{subject to} \\ \sum_{j \in J^{\pm}} w_j \ge \delta \\ \sum_j w_j = 1$

Conclusions

The Borda path The Condorcet path

And the final ranking?

•
$$x \succcurlyeq y \Leftrightarrow o(x) - i(x) \ge o(y) - i(y)$$

● Recursively constructing ≽:

•
$$[x]_1 = \{x \in A : \neg \exists y \ y \succeq x\}$$

 $[x]_i = \{x \in A \setminus \bigcup_{i=1} [x] : \neg \exists y \ y \succeq x\}$

•
$$[X]_n = \{x \in A : \neg \exists y \ x \succeq y\}$$

 $[X]_i = \{x \in A \setminus \bigcup_{n=i} [x] : \neg \exists y \ x \succeq y\}$

<ロト <回 > < 注 > < 注 > 、

æ

ondorcet

The Borda path The Condorcet path

And the final ranking?

•
$$x \succcurlyeq y \Leftrightarrow o(x) - i(x) \ge o(y) - i(y)$$

■ Recursively constructing >:

•
$$[x]_1 = \{ x \in A : \neg \exists y \ y \succeq x \}$$

$$[x]_i = \{ x \in A \setminus \bigcup_{i=1} [x] : \neg \exists y \ y \succeq x \}$$

•
$$[x]_n = \{ x \in A : \neg \exists y \ x \succeq y \}$$

$$[x]_i = \{ x \in A \setminus \bigcup_{n=i} [x] : \neg \exists y \ x \succeq y \}$$

<ロト <回 > < 注 > < 注 > 、

The Borda path The Condorcet path

Rating

What if we have preference relations $\succeq_j \subseteq A \times P \cup P \times A$? The global preference relation remains the same.

- pessimistic rating
 - *x* is iteratively compared with $p_t \cdots p_1$,
 - as soon as $(x \succeq p_h)$ is established, assign x to category c_h .
- optimistic rating
 - *x* is iteratively compared with $p_1 \cdots p_t$,

- as soon as is established $(p_h \succeq x) \land \neg (x \succeq p_h)$ then assign *x* to category c_{h-1} .

ヘロト 人間 とくほとく ほとう

The Borda path The Condorcet path

What is the output?

• A global preference relation including incomparabilities.

- An explicit representation of hesitation.
- Robust Rankings, Choices and Ratings.

<ロト <回 > < 注 > < 注 > 、

The Borda path The Condorcet path

What is the output?

- A global preference relation including incomparabilities.
- An explicit representation of hesitation.
- Robust Rankings, Choices and Ratings.

くロト (過) (目) (日)

The Borda path The Condorcet path

What is the output?

- A global preference relation including incomparabilities.
- An explicit representation of hesitation.
- Robust Rankings, Choices and Ratings.

イロト イポト イヨト イヨト

Lessons learned

- In order to aid decision making we need to handle preferences: learn, model and aggregate them.
- Preferences are ultimately binary relations. Numerical representations are useful, but not strictly necessary.
- "Weights" do not exist independently. They are not primitives, but second order models.
- There is no universal preference aggregation procedure and will never exist one. We always need to justify why we adopt that precise one and for which purpose.
- Providing decision aiding is not computing the output of a given procedure, but being able to explain, justify, use and revise this output.

ヘロト ヘワト ヘビト ヘビト

Lessons learned

- In order to aid decision making we need to handle preferences: learn, model and aggregate them.
- Preferences are ultimately binary relations. Numerical representations are useful, but not strictly necessary.
- "Weights" do not exist independently. They are not primitives, but second order models.
- There is no universal preference aggregation procedure and will never exist one. We always need to justify why we adopt that precise one and for which purpose.
- Providing decision aiding is not computing the output of a given procedure, but being able to explain, justify, use and revise this output.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Lessons learned

- In order to aid decision making we need to handle preferences: learn, model and aggregate them.
- Preferences are ultimately binary relations. Numerical representations are useful, but not strictly necessary.
- "Weights" do not exist independently. They are not primitives, but second order models.
- There is no universal preference aggregation procedure and will never exist one. We always need to justify why we adopt that precise one and for which purpose.
- Providing decision aiding is not computing the output of a given procedure, but being able to explain, justify, use and revise this output.

・ロット (雪) () () () ()

Lessons learned

- In order to aid decision making we need to handle preferences: learn, model and aggregate them.
- Preferences are ultimately binary relations. Numerical representations are useful, but not strictly necessary.
- "Weights" do not exist independently. They are not primitives, but second order models.
- There is no universal preference aggregation procedure and will never exist one. We always need to justify why we adopt that precise one and for which purpose.
- Providing decision aiding is not computing the output of a given procedure, but being able to explain, justify, use and revise this output.

ヘロン ヘアン ヘビン ヘビン

Lessons learned

- In order to aid decision making we need to handle preferences: learn, model and aggregate them.
- Preferences are ultimately binary relations. Numerical representations are useful, but not strictly necessary.
- "Weights" do not exist independently. They are not primitives, but second order models.
- There is no universal preference aggregation procedure and will never exist one. We always need to justify why we adopt that precise one and for which purpose.
- Providing decision aiding is not computing the output of a given procedure, but being able to explain, justify, use and revise this output.

・ロト ・四ト ・ヨト ・ヨト