Middle East Technical University

Multiple Criteria Decision Making: Interactive Approaches

Murat Köksalan Professor Middle East Technical University, Ankara, Turkey Visiting Professor, University of Michigan, Ann Arbor, MI, USA

> Chania, Greece July 2018

Outline

- Problem Definition
- Classification
- Choice (Discrete alternative) problem
- Design (Continuous) problem
- MOCO
- Resources

Problem Definition

(P) "Min" $\{z_1(x), ..., z_p(x)\}$ $x \in X$ where x: decision vector X: solution space z_i : ith objective function

Francis Ysidro Edgeworth 1881

Vilfredo Pareto 1896

Notion of Edgeworth-Pareto Optimal

Efficient solution

x is an efficient solution if there exists no
x' such that

 $z_i(\mathbf{x'}) \le z_i(\mathbf{x})$ i=1,...,p and $z_i(\mathbf{x'}) \le z_i(\mathbf{x})$ for at least one i.

- If x is efficient then (z₁(x),...,z_p(x)) is said to be nondominated.
- Remark: "Best" solution is an efficient solution.

Efficient set/frontier

The set of all efficient solutions form the efficient set/frontier

The set of all nondominated points form the nondominated set/frontier

Solution Types

Classification

If X={X₁,...,X_n} then Choice (*Discrete Alternative*) Problem where X_i=(x_{i1},...,x_{ip})

• If $X = \{x: g_j(x) \le b_j j = 1,...,m\}$ then Design *(Continuous Solution Space) Problem*

If X is discrete and "large" then Combinatorial Problem

MOCO

X is discrete and "large"

Grows fast with problem size

Hope of solving to optimality reduces as fast with problem size

Illustration: An MOLP-Problem

Max $f_1 = -x_1 + 2x_2$ Max $f_2 = 2x_1 - x_2$ Subject to:

 $\begin{array}{rrrr} x_{1} & \leq 4 \\ & x_{2} & \leq 4 \\ & x_{1} + x_{2} & \leq 7 \\ - x_{1} + x_{2} & \leq 3 \\ & x_{1} - x_{2} & \leq 3 \\ & x_{1}, x_{2} & \geq 0 \end{array}$

MOLP-Example: In Decision Space

MOLP-Problem: In Criterion Space

The MOLP-Problem in Criterion Space

 $\begin{array}{ll} max & f_1 \\ max & f_2 \\ Subject to: \end{array}$

 $\begin{array}{rrrr} f_1 + 2f_2 &\leq 12 \\ 2f_1 + & f_2 &\leq 12 \\ f_1 + & f_2 &\leq 7 \\ f_1 - & f_2 &\leq 9 \\ -f_1 + & f_2 &\leq 9 \\ f_1 + 2f_2 &\geq 0 \\ 2f_1 + & f_2 &\geq 0 \end{array}$

MOLP-Problem: In Criterion Space

Theorem

 $Max \sum w_i z_i(x)$
st $x \in X$

yields a (supported) efficient solution for any set of weights satisfying $w_i > 0$ i=1,...,p

Remark: Changing w_i 's systematically, different (supported) efficient solutions can be obtained

Criteria and weight space

Weighted Sums: Discrete Alternative Problem

Weight Set - Tchebycheff

Source: Bozkurt et al. (2010) Oper. Res.

0

Middle East Technical University

The E-constraint approach

 Idea: Write "min. acceptable level" constraints on all but one objective

 $\begin{aligned} & \text{Max } z_k(x) \\ & z_i(x) \geq \varepsilon_i \qquad \forall \ i \neq k \\ & x \in X \end{aligned}$

does not guarantee an efficient solution

The solution may be weakly efficient but inefficient

ε-constraint (cont.)

To guarantee an efficient solution, solve

$$\begin{aligned} & \text{Max } z_k(x) + \sum_{i \neq k} \rho_i z_i(x) \\ & z_i(x) \geq \varepsilon_i \quad \forall \ i \neq k \\ & x \in X \end{aligned}$$

where $\rho_i > 0$ and arbitrarily small

ε-constraint (cont.)

- Changing ε_i values systematically, we can find many (sometimes all) efficient solutions and approximate the efficient frontier
- We can explore different (desirable) parts of the efficient frontier
- In integer programs, we may be able to find all efficient solutions

Choice (Discrete) Problem: Further Outline

- Prior articulation of preferences
 - Estimating a value function
 - Outranking relations
 - AHP
- Progressive articulation of preferences
 - Interactive approaches-implicit value fn.
 - linear
 - quasiconcave
 - general monotone
 - Estimation of the form of value fn.
- Visual Interactive Approaches
 - VIMDA, VISA, ...
- Classification and Sorting Problems

Progressive articulation of preferences-Interactive approaches

Suitable for:

- large # of alts
- several criteria (say 2-7).
- Aim: converge to "best" alternative quickly.
- Assume
 - the DM can compare pairs of alternatives
 - there exists an implicit value fn, v, consistent with DM's preferences
 - the general form of v (linear or quasiconcave or general monotone) is known.

Structure of the approach

- The DM compares provided pairs of alternatives.
- Set of alternatives is reduced (based on DM's response and known form of v).
- Repeat until only "best" alternative is left.

Linear v

A pair of alts. are adjacent efficient if their convex combinations are not convex dominated

Linear v (Zionts, *EJOR* 1981)

• Theorem: An alt. preferred to all its adj. eff. alts. is "best."

Approach

Find x* maximizing a linear estimated v

- Ask DM to compare x* with its adjacent efficient solutions
 - If an adjacent eff. solution is preferred update v and start again
- If x* is preferred to all adjacent eff. solutions, Stop.

Stanley Zionts

Quasiconcave v (Korhonen et al, *Mgmt. Sci.* 1984)

- Property of v: decreasing marginal rate of substitution.
- Thm: If $v(X_k)=Min_{i\in S}v(X_i)$ then for all Y satisfying $C=X_k+\Sigma_{i\in S}\mu_i(X_k-X_i) \ge Y \quad \mu_i \ge 0$ we have

 $v(X_k) \ge v(Y).$

Demonstration

Assume $v(X_1) > v(X_2)$

To solve for Y_t

 $(P) \quad Min \ 0$ st $\sum_{i \neq k} \mu_i (X_k - X_i) \ge (Y_t - X_k)$ $\mu_i \ge 0 \ i \neq k$

If (P) is feasible then $v(X_k) \ge v(Y_t)$

If (P) is infeasible then no info.

(D) Max $\lambda(Y_t - X_k)$ st $\lambda(X_k - X_i) \le 0$ $\lambda \ge 0$

• If (D) has 0 obj. at optimal: then (P) is feasible and $v(X_k) \ge v(Y_t)$

• If (D) is positive then (P) is infeasible and $v(X_k) ? v(Y_t)$

Approach

- Ask the DM to compare some pairs of alts.
- Define all cones, and eliminate alts. that fall into any cone, C.
- Continue until a single alt. is left.

Pekka Korhonen

Jyrki Wallenius

Variations

Köksalan, Karwan and Zionts (*IEEE SMC* 1984) and Köksalan and Taner (*EJOR* 1992) make modifications to improve the convergence

V : L^{w}_{α} (Karakaya et al., EJOR 2018)

$$L^{\mathbf{w}}_{\alpha}(|\mathbf{q}-\mathbf{r}|) = \begin{cases} \left(\sum_{j=1}^{p} \left(w_{j}|q_{j}-r_{j}|\right)^{\alpha}\right)^{1/\alpha}, & \text{if } 1 \le \alpha < \infty, \\\\ \max_{j=1,\dots,p} \{w_{j}|q_{j}-r_{j}|\}, & \text{if } \alpha = \infty, \end{cases}$$

- Property of v:
 - approximates quasiconcave/quasiconvex functions well
 - \bullet takes a variety of forms based on α and w

We consider weighted version and $\alpha \ge 1$

Inferior Alternatives

Assume that z_1 is preferred to z_k , i.e. $v(z_1) \le v(z_k)$

Inferior Alternatives

Assume that z_1 is preferred to z_k , i.e. $v(z_1) \le v(z_k)$

Approach

- Start with linear v.
- Ask the DM to compare some pairs of alts.
- Solution Eliminate inferior alts. that fall into any $C_{\alpha}(z_i, z_k)$
- \blacksquare Update parameters of v. If necessary, increase α
- Continue until a single alt. is left
- If α is known, continue until an alt. is preferred to all its "α-adjacent" alts.

General monotone v (Köksalan and Sagala 1995, *Man Sci*)

Assume only "more is better"Eliminate only based on dominance

Approach

- Group alts into partitions & find PIs
- If DM prefers an alt to a PI, delete whole partition
- If necessary, reduce group sizes and redefine PIs
- Repeat until a single alt is left

Estimate form of v

- Korhonen et al (1986, 1993), Salminen et al (1989)
 - Solve various LPs to test violations of linearity and quasiconcavity
- Köksalan & Sagala (1995)
 - Use convex combinations of alts to quickly identify violations of linearity and quasiconcavity
- A General Approach
 - Estimate form of v
 - Use most efficient algorithm available for identified form

Visual Interactive Approaches

VIMDA (Korhonen '88 *EJOR*)
AIM (Lotfi et. al. '92 *C&OR*)

۰..

Classification and Sorting

- Place alternatives in different classes (based on similarity-classification) or preference-ordered classes (sorting)
- Examples
 - Patients into disease groups based on symptoms
 - Country risk assessment, credit risk assessment
 - Selecting applicants for different scholarships/graduate programs
 - Selecting projects for different kinds of funding policies

An Approach (Köksalan and Ulu, *EJOR* 2003)

Linear Utility Function-not explicitly known

$$\boldsymbol{u}(\boldsymbol{X}_i) = \sum_{J} \lambda_j \boldsymbol{X}_{ij}$$

Preference classes are well defined

 $X_i \in C \Leftrightarrow LB(C) \le u(X_i) \le UB(C)$ (unknown to us)

DM can correctly place alternatives in preference classes consistent with his/her underlying utility function and the bounds

Algorithm

- Ask DM to place alternatives in a preference class; C_i
- To place alternatives in implied preference classes, C_i', use:
 - Dominance
 - Convex combinations
 - Weight space reduction

Dominance

Convex Combinations

Using convex dominance to detect the worst possible class of an alternative

Using convex dominance to detect the best possible class of an alternative

Weight Space Reduction

Variations

- An Interactive sorting method for an additive v (Koksalan and Ozpeynirci, COR 2009)
- An Interactive probabilistic sorting method for an additive v (Bugdaci, Koksalan, Ozpeynirci, Serin, *IIE Transactions* 2013)
- An Interactive sorting method for quasiconcave v (Ulu & Koksalan, NRL 2014)

Design (Continuous Solution Space) Problem

- •Steuer, Multiple Criteria Optimization, Wiley 1986
- •Miettinen, Nonlinear Multiobjective Opt, Kluwer 1999
 - Further Outline
 - Prior articulation of preferences
 - GP
 - Progressive articulation of preferences
 - Interactive approaches-implicit value fn.
 - Posterior articulation of preferences

Progressive Articulation of Preferences

- Geoffrion, Dyer, and Feinberg (GDF) '72 Man. Sci.
- Benayoun et al. (STEM) '71 Math. Prog.
- Zionts & Wallenius (Z-W) '76 Man. Sci.
- Steuer & Choo '83 Math. Prog.
- Köksalan & Karasakal '06 JORS
- Miettinen et al. '10 EJOR
- * Visual Aids
- Korhonen & Laakso '86 EJOR
- Korhonen & Wallenius '88 NRL

and many others

Frank-Wolfe (F-W) NLP (known v)

Source:

Example

GDF (*Man. Sci.* 1972)

- There are two problems when v is not known:
 - 1. We don't know the gradient (steepest ascent direction)
 - 2. We cannot find the best point along that direction

GDF (cont.)

To obtain preference info:

1. Locally approximate v by

 $F(x) = \sum w_i z_i(x)$ Let $w_1 = 1$. Estimate w_i asking the DM local tradeoffs between z_1 and z_i . Find gradient of F(x) at the current x

Find gradient of F(x) at the current x.

2. Ask the DM the best of several discrete points along the direction

Art Geoffrion

Jim Dyer

The Step Method (STEM) Benayoun,

deMontgolfier, Tergny, and Larichev (Math. Prog. 1971)

In each iteration, solve (P):

Min α

st
$$\alpha \ge \lambda_i (z_i^* - z_i(x))$$
 $i \notin J^*$
 $z_i(x) \ge z_i (x^{current}) - \Delta_i$ $i \in J^*$
 $x \in X$

Oleg Larichev

Minimizes a weighted Tchebycheff distance from the ideal point

Parameters

λ_i: a weight for obj. i
Δ_i: amount DM is willing to sacrifice in obj. i
z*: is the ideal point
J*: Set of objectives DM is willing to sacrifice from

Z-W Method (Man. Sci. 1976)

Assume

- *v* is linear
- z_i is linear for all i
- X is a polytope

Z-W (cont.)

- 1. Find an efficient extreme point solution maximizing an estimated linear v
- 2. Find its adjacent efficient solutions
- 3. Ask the DM if he/she likes tradeoffs towards any adjacent eff solutions
 - If not; stop.
 - If yes; update the estimated v and go to 1.

Augmented w. Tchebycheff function

Augmented w. Tchebycheff program

(TP) Min
$$\alpha + \rho \sum (z_i^* - z_i(x))$$

 $\alpha \ge \lambda_i (z_i^* - z_i(x))$
 $x \in X$

Examples

Interactive w. Tch. Approach Steuer and Choo (*Math. Prog.* 1983)

- Randomly generate weights
- With each weight set solve (TP) to find a set of eff solns
- Ask the DM best of a representative (small) set of eff solns
- Shrink the weight set around the weights favoring chosen solution
- Repeat several iterations

Ralph Steuer

Achievement Scalarizing Program (ASP)

$$\begin{array}{ll} \text{Minimize} & \alpha - \varepsilon \sum_{i=1}^{m} z_i(x) \\\\ \text{subject to} : & \alpha \ge \lambda_i (q_i - z_i(x)) \; \forall \, i \\\\ & x \in X \end{array}$$

ASP projects q onto the efficient frontier in the direction $1/\lambda$ (or $-1/\lambda$).

Andrzej Wierzbicki

Example:
$$\lambda_1 = .8, \lambda_2 = .2$$

An Iteration for a Nonlinear Product Design Problem

General Monotone v (Köksalan and Karasakal *JORS* '06)

Assume z^* is preferred to P^1 and P^2

Example (cont.)

ferx

₽ Fi<×>

Example (cont.)

Nautilus-Miettinen, Eskelinen, Ruiz, Luque, *EJOR* 2010

- Starts from the nadir point
- Gets direction information
- Works through dominated solutions to eventually reach the Pareto front

Combinatorial problems (MOCO)

- Mostly bicriteria approaches
- Many "optimize" a given v
- Some generate the nondominated set
- Many use modern heuristic search
- Few interactive approaches
- Review article (Ehrgott & Gandibleux '00 *OR Spektrum*)
- Multi-objective Optimization using Evolutionary Algorithms (Deb '01)
- Computationally hard (NP-complete, #P-complete)

INTRODUCTION

QUASICONCAVE VALUE FUNCTION AND CONES Lokman, Köksalan, Korhonen, Wallenius (*ANOR* 2016)

Demonstration of a 2-point convex cone

QUASICONCAVE VALUE FUNCTION AND CONES

QUASICONCAVE VALUE FUNCTION AND CONES

In our case:

- The solution space is defined by a set of constraints.
- Nondominated points are implicit.
- We need to characterize the admissible solution space: the non cone-dominated region.
- This region is typically nonconvex.
- Representing the admissible region is more manageable with 2-point cones.

AN INTERACTIVE ALGORITHM

AN INTERACTIVE ALGORITHM

Solving MIP Problems Using Convex Preference Cones Assuming quasiconcavity of DM's value function:

- iteratively generates new nondominated points
- constructs 2-point convex cones based on the preferences of the DM.
- keeps an incumbent point and excludes inferior regions and the incumbent point.
- terminates when problem becomes infeasible since it implies all remaining nondominated points are inferior to the incumbent.
- guarantees finding the most preferred point

Diclehan Tezcaner Öztürk Hacettepe University

UAV ROUTE PLANNING

Öztürk Tezcaner D. and M. Köksalan, ANOR (2016)

- UAV starts from a base, visits all targets, and returns to the base
- Minimize;
 - distance
 - radar detection threat
- → Biobjective Routing Problem

Terrain Types

Discretized Terrain

Continuous Terrain

Movement Between Targets

Three types of moves:

Type 1: No intersection with the radar region

Type 2: Moves through outer radar region only

Type 3: Moves through both radar regions

$$D = \int_{t_A}^{t_B} ds$$

$$\frac{t_{A}}{\sqrt{2}} \qquad \frac{t_{B}}{\sqrt{2}}$$

$$\frac{dar}{\sqrt{2}} \qquad \frac{t_{A}}{\sqrt{2}} \qquad \frac{t_{B}}{\sqrt{2}}$$

$$\frac{dar}{\sqrt{2}} \qquad \frac{t_{A}}{\sqrt{2}} \qquad \frac{t_{B}}{\sqrt{2}}$$

$$\frac{dar}{\sqrt{2}} \qquad \frac{t_{A}}{\sqrt{2}} \qquad \frac{t_{B}}{\sqrt{2}}$$

$$RDT = \int_{t_{A}}^{t_{B}} p_{d}. ds$$

UAV Routing - Continuous Terrain

• Finding the most preferred solution of a DM with linear preference function

 $U(z) = w \cdot z_1(x) + (1 - w) \cdot z_2(x)$ where 0 < w < 1

Recent Software

- iMOLPe interactive Multi-Objective Linear Programming explorer
- Visualization of results obtained with TRIMAP, STEM, ICW and Pareto Race interactive methods.
- Free download: <u>http://www.uc.pt/en/org/inescc/software</u>

Some References

Alves M. J., Henggeler Antunes C., Clímaco. J., Interactive MOLPExplorer -A Graphical-Based Computational Tool for Teaching and Decision Support in Multi-Objective Linear Programming Models, *Computer Applications of Engineering Education*, 23(2):314-326, 2015.

Benayoun, R., deMontgolfier, J., Tergny, J., and Larichev, O. (1971). "Linear Programming with Multiple Objective Functions: Step-method (STEM)," *Mathematical Programming* 1 (3), 366-375.

Bozkurt, B., Fowler, J. W., Gel, E. S., Kim, B., Köksalan, M., and Wallenius, J. "Quantitative Comparison of Approximate Solution Sets for Multi-Criteria Optimization Problems with Weighted Tchebycheff Preference Function," *Operations Research* 58 (3), 650-659, 2010.

Geoffrion, A., Dyer, J., and Feinberg, A. (1972). "An Interactive Approach for Multicriterion Optimization with an Application to the Operation of an Academic Department," *Management Science* 19 (4), 357-368.

Karakaya, G., Köksalan, M., and Ahipasaoglu, S. D. "Interactive Algorithms for a Broad Underlying Family of Preference Functions," European Journal of Operational Research, 265, 1, 248-262, 2018.

Köksalan, M.M., Karwan, M.H., and Zionts, S. (1984). "An Improved Method for Solving Multiple Criteria Problems Involving Discrete Alternatives," *IEEE Transactions on SMC*, Vol. SMC-14, No.1, 24-34.

References (cont.)

Köksalan, M. and Plante, R.D. (2003). "Interactive Multi-criteria Optimization for Multiple Response Product and Process Design," *Manufacturing and Service Operations Management* 5 (4), 334-347.

Köksalan, M.M. and Sagala, P.N.S. (1995a). "Interactive Approaches for Discrete Alternative Multiple Criteria Decision Making with Monotone Utility Functions," *Management Science* 41, 1158-1171.

Köksalan, M.M. and Sagala, P.N.S. (1995b). "An Approach and Computational Results on Testing the Form of a Decision Maker's Utility Function," *Journal of Multi-criteria Decision Analysis* 4, 189-202.

Köksalan, M. and Ulu, C. (2003). "An Interactive Approach for Placing Alternatives in Preference Classes," *European Journal of Operational Research* 144, 429-439.

Korhonen, P. and Laakso, J. (1986). "A Visual Interactive Method for Solving the Multiple Criteria Problem," *European Journal of Operational Research* 24, 277-287.

Korhonen, P., Wallenius, J., and Zionts, S. (1984). "Solving the Discrete Multiple Criteria Problem Using Convex Cones," *Management Science* 30 (11), 1336-1345.

Lokman, B., Köksalan, M., Korhonen, P. J., and Wallenius, J., "An Interactive Algorithm to Find the Most Preferred Solution of Multi-objective Integer Programs," *Annals of Operations Research*, 245, 67-95, 2016.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization, Kluwer, Boston.

Middle East Technical University

References (cont.)

Miettinen K, Eskelinen P, Ruiz F, Luque M (2010) NAUTILUS method: an interactive technique in multiobjective optimization based on the nadir point. Eur J Oper Res 206:426–434.

Öztürk, Tezcaner D. and Köksalan, M. "An interactive approach for biobjective integer programs under quasiconvex preference functions," *Annals of OR*, 244, 2, 677-696, 2016.

Steuer, R.E. (1986). *Multiple Criteria Optimization: Theory, Computation and Application*, John Wiley, New York.

Steuer, R.E. and Choo, E.-U. (1983). "An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming," *Mathematical Programming* 26 (3), 326-344.

Ulu, C. and Köksalan, M., "An interactive approach to multicriteria sorting for quasiconcave value functions," *Naval Research Logistics*, 61: 447–457, 2014.

Zionts, S. (1981). "A Multiple Criteria Method for Choosing Among Discrete Alternatives," *European Journal of Operational Research* 7, 143-147.

Zionts, S. and Wallenius, J. (1976). "An Interactive Programming Method for Solving the Multiple Criteria Problem," *Management Science* 22, 652-663.

Resources

International Society on MCDM:

<u>http://www.mcdmsociety.org/</u> : Free membership thru Web site

International Conferences

- 25th International Conference, Summer 2019, Istanbul, Turkey, Ilker Topcu.
- 24th International Conference, July 9-14, 2017, Ottawa, Canada, Sarah Ben Amor.
- 23rd International Conference, August 3-7, 2015, Hamburg, Germany, Martin J. Geiger.
- 22nd International Conference, June 17-21, 2013, Málaga, Spain, Francisco Ruiz.
- 21st International Conference, June 13-17, 2011, Jyväskylä, Finland, Kaisa Miettinen
- 20th International Conference, June 22-26, 2009, Chengdu, China, Yong Shi, S. Wang
- 19th International Conference, January 7-12, 2008, Auckland, New Zealand, M. Ehrgott
- 18th International Conference, June 19-23, 2006, Chania, Greece, C. Zapounidis
- 17th International Conference, August 6-11, 2004, Vancouver, Canada, Bill Wedley
- 16th International Conference, 2002, Semmering, Austria, M. Luptacik, R. Vetschera
- 15th International Conference, July 10-14, 2000, Ankara, Turkey, Murat Köksalan
- 1st International Conference, 1975, Jouy-en-Josas, France, H. Thiriez, S. Zionts

Resources (cont.)

Other groups:

•INFORMS Section on MCDM

•EURO Working Group on MCDA (MCDA '84, Vienna, Austria, September 22-24, 2016)

•GP

•MOEA

•...

Publications

- Many books
- Journal of MCDA
- Springer Proceedings
- Regular OR Journals
- Other Specialized Journals

History of MCDM

Multiple Criteria Decision Making: From Early History to the 21st Century by M. Köksalan, J. Wallenius and S. Zionts, World Scientific, 2011.

